Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 12(5): e0050824, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38501867

RESUMEN

Tuberculostearic acid (TBSA) is a fatty acid unique to mycobacteria and some corynebacteria and has been studied due to its diagnostic value, biofuel properties, and role in membrane dynamics. In this study, we demonstrate that TBSA production can be abrogated either by addition of pivalic acid to mycobacterial growth cultures or by a bfaA gene knockout encoding a flavin adenine dinucleotide (FAD)-binding oxidoreductase. Mycobacterium avium subspecies paratuberculosis (Map) growth and TBSA production were inhibited in 0.5-mg/mL pivalic acid-supplemented cultures, but higher concentrations were needed to have a similar effect in other mycobacteria, including Mycobacterium smegmatis. While Map C-type strains, isolated from cattle and other ruminants, will produce TBSA in the absence of pivalic acid, the S-type Map strains, typically isolated from sheep, do not produce TBSA in any condition. A SAM-dependent methyltransferase encoded by bfaB and FAD-binding oxidoreductase are both required in the two-step biosynthesis of TBSA. However, S-type strains contain a single-nucleotide polymorphism in the bfaA gene, rendering the oxidoreductase enzyme vestigial. This results in the production of an intermediate, termed 10-methylene stearate, which is detected only in S-type strains. Fatty acid methyl ester analysis of a C-type Map bfaA knockout revealed the loss of TBSA production, but the intermediate was present, similar to the S-type strains. Collectively, these results demonstrate the subtle biochemical differences between two primary genetic lineages of Map and other mycobacteria as well as explain the resulting phenotype at the genetic level. These data also suggest that TBSA should not be used as a diagnostic marker for Map.IMPORTANCEBranched-chain fatty acids are a predominant cell wall component among species belonging to the Mycobacterium genus. One of these is TBSA, which is a long-chain middle-branched fatty acid used as a diagnostic marker for Mycobacterium tuberculosis. This fatty acid is also an excellent biolubricant. Control of its production is important for industrial purposes as well as understanding the biology of mycobacteria. In this study, we discovered that a carboxylic acid compound termed pivalic acid inhibits TBSA production in mycobacteria. Furthermore, Map strains from two separate genetic lineages (C-type and S-type) showed differential production of TBSA. Cattle-type strains of Mycobacterium avium subspecies paratuberculosis produce TBSA, while the sheep-type strains do not. This important phenotypic difference is attributed to a single-nucleotide deletion in sheep-type strains of Map. This work sheds further light on the mechanism used by mycobacteria to produce tuberculostearic acid.


Asunto(s)
Proteínas Bacterianas , Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Ácidos Esteáricos , Mycobacterium avium subsp. paratuberculosis/genética , Mycobacterium avium subsp. paratuberculosis/metabolismo , Mycobacterium avium subsp. paratuberculosis/efectos de los fármacos , Animales , Paratuberculosis/microbiología , Bovinos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ovinos/microbiología , Ácidos Grasos/metabolismo , Polimorfismo de Nucleótido Simple , Metiltransferasas/genética , Metiltransferasas/metabolismo
3.
Microbiol Spectr ; 12(2): e0269223, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38226805

RESUMEN

Bovine tuberculosis (bTB), traditionally associated with Mycobacterium bovis, presents significant public health and economic challenges worldwide. This study investigated the causative agents of bTB in slaughtered cattle and buffalo in Lahore, Pakistan. Of the 3,581 animals screened, 34 were identified with gross TB-like lesions. The lesions were processed for culture, PCR, and Sanger sequencing to identify the causative agents of the disease. The results identified 10 Mycobacterium orygis and 8 Mycobacterium tuberculosis sensu stricto isolates. Whole-genome sequencing was performed on two M. orygis isolates, and the sequences were phylogenetically compared to 93 publicly available M. orygis sequences. The results also demonstrated that the JB21 and JB22 primers, which have been previously commonly applied to detect M. bovis in Pakistan, are unable to distinguish between M. tuberculosis complex subspecies. The identification of M. orygis and M. tuberculosis as causative agents of bTB in this slaughterhouse in Punjab may have important implications in identifying cases of zoonotic TB in humans and applying appropriate molecular tools to identify the prevalence of the disease. The data from this study align with recent findings suggesting M. orygis is the predominant cause of bTB in South Asia.IMPORTANCEThe study findings hold significant relevance to the Journal of Clinical Microbiology, as they directly impact the field. The first-time identification of Mycobacterium orygis and Mycobacterium tuberculosis as the predominant causative agents of bovine tuberculosis in Lahore, Pakistan underscores the urgent need for enhanced diagnostic methods. The study emphasizes the importance of improved assays for the accurate detection and differentiation of Mycobacterium subspecies. Additionally, the research addresses zoonotic risk assessment and public health implications, advocating for a multidisciplinary approach that integrates clinical microbiology with veterinary and human health sectors. These insights contribute to clinical microbiology knowledge, shaping effective strategies for disease prevention, surveillance, and control. The study's potential to advance the field makes it well suited for publication in the Microbiology Spectrum journal.


Asunto(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Mycobacterium , Tuberculosis Bovina , Animales , Bovinos , Humanos , Tuberculosis Bovina/epidemiología , Tuberculosis Bovina/microbiología , Pakistán
4.
Gut Pathog ; 15(1): 46, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789445

RESUMEN

Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of paratuberculosis, a chronic gastrointestinal disease affecting ruminants. This disease remains widespread in part due to the limitations of available diagnostics and vaccines. A representative small animal model of disease could act as a valuable tool for studying its pathogenesis and to develop new methods for paratuberculosis control, but current models are lacking. Streptomycin pre-treatment can reduce colonization resistance and has previously been shown to improve enteric infection in a Salmonella model. Here, we investigated whether streptomycin pre-treatment of mice followed by MAP gavage could act as a model of paratuberculosis which mimics the natural route of infection and disease development in ruminants. The infection outcomes of MAP were compared to M. avium subsp. hominissuis (MAH), an environmental mycobacterium, and M. bovis and M. orygis, two tuberculous mycobacteria. Streptomycin pre-treatment was shown to consistently improve bacterial infection post-oral inoculation. This model led to chronic MAP infection of the intestines and mesenteric lymph nodes (MLNs) up to 24-weeks post-gavage, however there was no evidence of inflammation or disease. These infection outcomes were found to be specific to MAP. When the model was applied to a bacterium of lesser virulence MAH, the infection was comparatively transient. Mice infected with bacteria of greater virulence, M. bovis or M. orygis, developed chronic intestinal and MLN infection with pulmonary disease similar to zoonotic TB. Our findings suggest that a streptomycin pre-treatment mouse model could be applied to future studies to improve enteric infection with MAP and to investigate other modifications underlying MAP enteritis.

5.
Microbiol Spectr ; 9(2): e0109821, 2021 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-34494864

RESUMEN

Mycobacterium bovis bacillus Calmette-Guérin (BCG) is a live attenuated vaccine which can result in local or disseminated infection, most commonly in immunocompromised individuals. Differentiation of BCG from other members of the Mycobacterium tuberculosis complex (MTBC) is required to diagnose BCG disease, which requires specific management. Current methods for BCG diagnosis are based on mycobacterial culture and conventional PCR; the former is time-consuming and the latter often unavailable. Further, there are reports that certain BCG strains may be associated with a higher rate of adverse events. This study describes the development of a two-step multiplex real-time PCR assay which uses single nucleotide polymorphisms to detect BCG and identify early or late BCG strains. The assay has a limit of detection of 1 pg BCG boiled lysate DNA and was shown to detect BCG in both pure cultures and experimentally infected tissue. Its performance was assessed on 19 suspected BCG clinical isolates at Christian Medical College in Vellore, India, taken from January 2018 to August 2020. Of these 19 isolates, 10 were identified as BCG (6 early and 4 late strains), and 9 were identified as other MTBC members. Taken together, the results demonstrate the ability of this assay to identify and characterize BCG disease from cultures and infected tissue. The capacity to identify BCG may improve patient management, and the ability to discriminate between BCG strains may enable BCG vaccine pharmacovigilance. IMPORTANCE Vaccination against tuberculosis with bacillus Calmette-Guérin (BCG) can lead to adverse events, including a rare but life-threatening complication of disseminated BCG. This complication often occurs in young children with immunodeficiencies and is associated with an ∼60% mortality rate. A rapid method of reliably identifying BCG infection is important because BCG requires treatment unique to tuberculosis. BCG is resistant to the first-line antituberculosis drug pyrazinamide. Additionally, diagnosis of BCG disease would lead to further investigation of a possible underlying immune condition. We have developed a diagnostic assay to identify BCG which improves upon previously published methods and can reliably identify BCG from bacterial culture or directly from infected tissue. This assay can also differentiate between strains of BCG, which have been suggested to be associated with different rates of adverse events. This assay was validated on 19 clinical isolates collected at Christian Medical College in Vellore, India.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas/diagnóstico , Mycobacterium bovis/genética , Mycobacterium bovis/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Vacunas Atenuadas/efectos adversos , Adolescente , Animales , Niño , Preescolar , Femenino , Humanos , Límite de Detección , Masculino , Ratones , Ratones Endogámicos C57BL , Infecciones por Mycobacterium no Tuberculosas/microbiología , Infecciones por Mycobacterium no Tuberculosas/terapia , Mycobacterium bovis/inmunología , Polimorfismo de Nucleótido Simple/genética , Tuberculosis/prevención & control , Vacunas Atenuadas/inmunología , Adulto Joven
6.
Lancet Microbe ; 1(2): e66-e73, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32642742

RESUMEN

BACKGROUND: Zoonotic tuberculosis is defined as human infection with Mycobacterium bovis. Although globally, India has the largest number of human tuberculosis cases and the largest cattle population, in which bovine tuberculosis is endemic, the burden of zoonotic tuberculosis is unknown. The aim of this study was to obtain estimates of the human prevalence of animal-associated members of the Mycobacterium tuberculosis complex (MTBC) at a large referral hospital in India. METHODS: We did a molecular epidemiological surveillance study of 940 positive mycobacteria growth indicator tube (MGIT) cultures, collected from patients visiting the outpatient department at Christian Medical College (Vellore, India) with suspected tuberculosis between Oct 1, 2018, and March 31, 2019. A PCR-based approach was applied to subspeciate cultures. Isolates identified as MTBC other than M tuberculosis or as inconclusive on PCR were subject to whole-genome sequencing (WGS), and phylogenetically compared with publicly available MTBC sequences from south Asia. Sequences from WGS were deposited in the National Center for Biotechnology Information Sequence Read Archive, accession number SRP226525 (BioProject database number PRJNA575883). FINDINGS: The 940 MGIT cultures were from 548 pulmonary and 392 extrapulmonary samples. A conclusive identification was obtained for all 940 isolates; wild-type M bovis was not identified. The isolates consisted of M tuberculosis (913 [97·1%] isolates), Mycobacterium orygis (seven [0·7%]), M bovis BCG (five [0·5%]), and non-tuberculous mycobacteria (15 [1·6%]). Subspecies were assigned for 25 isolates by WGS, which were analysed against 715 MTBC sequences from south Asia. Among the 715 genomes, no M bovis was identified. Four isolates of cattle origin were dispersed among human sequences within M tuberculosis lineage 1, and the seven M orygis isolates from human MGIT cultures were dispersed among sequences from cattle. INTERPRETATION: M bovis prevalence in humans is an inadequate proxy of zoonotic tuberculosis. The recovery of M orygis from humans highlights the need to use a broadened definition, including MTBC subspecies such as M orygis, to investigate zoonotic tuberculosis. The identification of M tuberculosis in cattle also reinforces the need for One Health investigations in countries with endemic bovine tuberculosis. FUNDING: Bill & Melinda Gates Foundation, Canadian Institutes for Health Research.


Asunto(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis Bovina , Tuberculosis , Animales , Canadá , Bovinos , Humanos , Mycobacterium bovis/genética , Mycobacterium tuberculosis/genética , Tuberculosis/epidemiología , Tuberculosis Bovina/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...